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We present an extension of the previously proposed mean-field renormalization method to model
Hamiltonians that are characterized by more than just one type of interaction. The method rests on
scaling assumptions about the magnetization of different sublattices of the given lattice and it generates
as many flow equations as coupling constants without arbitrary truncations on the renormalized Hamil-
tonian. We obtain good results for the test case of Ising systems with an additional second-neighbor cou-
pling in two and three dimensions. An application of the method is also done to a morphological model
of interacting surfaces introduced recently by Likos, Mecke, and Wagner [J. Chem. Phys. 102, 9350

(1995))].
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I. INTRODUCTION

One of the simplest techniques for deriving renormal-
ization group recursions is the so-called mean-field renor-
malization group (MFRG) of Indekeu, Maritan, and Stel-
la [1]. The MFRG has proven to be an efficient method
for the calculation of critical couplings and exponents of
a wide variety of lattice models. The range of applica-
tions of the MFRG extends beyond the study of bulk crit-
ical phenomena in classical systems, to include quantum
models and surface criticalities; moreover, extensions of
the MFRG ideas to dynamical critical phenomena have
also been presented [2,3].

The most appealing features of the MFRG are its sim-
plicity and its direct connection with the classical mean-
field ideas; whereas mean-field theory is a simple ap-
proach to the study of the phase behavior of various
models in statistical mechanics, its most serious draw-
back is that it predicts the wrong (classical) critical ex-
ponents. The MFRG offers a way to remedy this
deficiency while maintaining some basic notions from the
mean-field approximation (e.g., the effective field).

We shall now summarize the main ideas of the original
MFRG. To illustrate the method, let us consider the
nearest-neighbor Ising model which is described by the
Hamiltonian

=—BH=h I s5;+J 3 555,
i Gij)

where the second sum is carried over nearest-neighbor
sites on a given lattice of dimension d. Consider now two
clusters of interacting spins, containing N and N’ sites,
with N’ < N. Suppose that the surrounding spins of these
clusters are fixed at the values b (|b| <1) for the larger
cluster and b’ (|b’| <1) for the small one, and evaluate
the magnetizations per site for both clusters, m and m’,
J

(1.1)

-1
A= *m(J,h,b) 3*m'(J',h',b")
! abaJ db’aJ’
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respectively. Clearly, m and m’ depend on the coupling
constant J, the magnetic field 4, and the boundary values
b and b’. Setting m(J,h,b)=b or m'(J,h,b')=>b’, we
would obtain two different types of mean-field equations,
which could then be solved self-consistently, and the cri-
ticality would be identified with the *“bifurcation point”
of either of the two equations for # =0 (each of the two
equations yields a different approximate value J, for the
critical coupling, of course.) However, this approach
leads to classical critical behavior. Instead, in the
MPFRG one uses the two cluster magnetizations to define
a mapping (J,h,b)—(J',h’,b’) by requiring

m' (I kb)) =5 ""m(J,h,b) (1.2)
together with
b'=s""""p (1.3)

to hold to leading orders in A and b. In Egs. (1.2) and
(1.3) above, the rescaling factor s is defined as

s=(N/N"HV4 (1.4)

Setting A =h'=0, expanding both sides of (1.2) to linear
order in b and b’, and using (1.3) we obtain the RG flows
for the coupling constant in the form

om'(J',h',b") _0m(J,h,b)

1.5
ab’ h'=0,b'=0 ab (13

h=0,b=0
Once the fixed points J, of the iteration have been found
from (1.5) the thermal and magnetic exponents y, and y,
are determined through the relations

InA,
Y=

ns ’ (1.6)

where

(1.7)

J=J"=J,h=h"=0,b=b"=0
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and

om'(J',h',b") =sd—2y,, om(J,h,b)
oh' J'=J¢,h'=0,b'=0 oh

As a rule, the MFRG yields better estimates for the criti-
cal coupling J.=J, than it does for the critical ex-
ponents. However, the latter can also be significantly im-
proved in a number of ways. Slotte [4] has shown that a
redefinition of the rescaling factor s leads to better values
for the thermal exponent than the “naive” definition of s,
Eq. (1.4) above. On the other hand, Indekeu, Maritan,
and Stella [5] have succeeded in improving the MFRG
critical exponents in a more systematic way, by consider-
ing three clusters and introducing an additional surface
critical exponent Yns this approach has led to a unified

approach to bulk, surface, and corner critical behavior
(see also Ref. [2]).

The remaining of the paper is organized as follows. In
Sec. II we motivate and present an extended version of
the MFRG. In Sec. III we test our approach by applying
it to the square, simple cubic and body-centered cubic Is-
ing models with crossing bonds, obtaining very good re-
sults for the fixed points and the overall phase behavior of
these models. In Sec. IV we then apply this RG scheme
to a morphological Hamiltonian of interacting surfaces
[6]. In Sec. V we summarize and conclude. Since the
derivation of the RG flows for the morphological model
is rather lengthy, we outline the main steps in the Appen-
dix.

II. EXTENDED MFRG

Let us consider, to begin with, what happens if we
want to renormalize, by means of the simple MFRG
scheme, a Hamiltonian in which the even interaction part
(i.e., excluding the magnetic field and having a remainder
which is invariant under s;— —s;) contains more than
just one type of interaction and thus more than one cou-
pling constant. Denoting by J=(J,,J,,...,J,) the v-
dimensional coupling constant of the Hamiltonian, the
MFRG which is based on the scaling of a single order pa-
rameter (the bulk magnetization) always leads to a single
flow equation, namely, one of the form (1.5) with J and J’
replaced by their multidimensional counterparts J and J',
respectively. Clearly, in order to specify the flows one
needs as many equations as coupling constants in the
Hamiltonian, so this single equation is not sufficient. In
the vast majority of MFRG applications to many-
coupling Hamiltonians, this equation was used in the fol-
lowing sense: a “fixed-point requirement” of the form
J=J' was made, which led to an equation of the form
f(J)=0, identified as the equation which defines the criti-
cal surface of the model. Although such an approach has
been widely used [2], and gives qualitatively correct re-
sults, it has the obvious drawback that it yields infinitely
many “fixed points” (each point on the critical surface is
“fixed”’), and thus detailed information on the critical ex-
ponents is lost in this scheme. Moreover, the approach

J=J4,h=0,b=0"
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(1.8)

serves only to define the critical surface alone and not to
determine the way in which each of the individual cou-
plings J,, a=1,2, .. .,v, flows in the presence of the oth-
ers. Therefore, such an approach is useful only in the
sense that it provides us with better estimates of the criti-
cal surface of a given model than the simple mean-field
approximation, requiring roughly the same amount of
computational effort; but it does not offer a means for the
renormalization of the Hamiltonian. The problem of a
single recursion relation also occurs in the phenomeno-
logical renormalization of Nightingale [7], a question that
has led Barber [8], to the development of an approach
similar in spirit to ours.

There have been a few attempts to go beyond the above
limitations of the MFRG: de Oliveira and Sa Baretto [9]
studied the two-parameter Hamiltonian of the Ashkin-
Teller (AT) model [10] and identified two order parame-
ters in the problem. Making scaling assumptions about
the order parameters of small and large clusters, they
were then able to obtain flow diagrams of the usual type,
finding isolated fixed points, critical exponents, etc.
However, the AT model is one in which fwo different
types of spin variables exist on the lattice sites, and this
makes the introduction of two types of ‘““magnetization”
natural in this model. An approach which has some
similarities to ours was presented by Plascak [11] for the
case of the two-dimensional Ising model with crossing
bonds. This approach is based on the selection of ap-
propriate pairs of order parameters, depending on the re-
gion of the parameter space considered. However, this
method leads to some ambiguities in the flows along the
axis of vanishing first-neighbor coupling [11]. On the
other hand, as we show below, our approach is free of
such ambiguities.

We first present the basic conditions to be satisfied for
the implementation of the method, at present. The types
of models on which our approach is applicable must
satisfy the following requirements (the discussion of more
general cases is postponed for the concluding section):

(i) the interaction part of the Hamiltonian must be
even, and it must contain only two coupling constants,
call them J and K;

(ii) the model must be defined on a bipartite lattice; and

(iii) there must be a region of the parameter space for
which there are only two kinds of ground states, a fer-
romagnetic (FM) and an antiferromagnetic (AFM) one,
separated by some borderline of stability.

Once these prerequisites are satisfied, the approach
proceeds as follows. Consider, as in the original formula-
tion, two clusters of N and N’ sites with N’ <N. (Hereaf-
ter, primed and unprimed quantities will refer to quanti-
ties pertaining to the small and large clusters, respective-
ly.) The clusters must be chosen in such a way that the
two different sublattices of the given bipartite lattice are
mutually equivalent in both clusters. Denoting the two



53 MULTI-INTERACTION MEAN-FIELD RENORMALIZATION GROUP

sublattices by 4 and B and fixing the surrounding sublat-
tice magnetizations to the values b} (b;) and b} (b,) on
the A and B sublattices, respectively, we then obtain by
the usual mean-field procedure expressions of the type
myp(J,K',h',b1,by) and m 4 p(J,K,h,b,,b,) for the
sublattice magnetizations of the small and big clusters. A
mapping (J,K,h,b;,b,)—(J',K',h',b},b,) is now
defined, in analogy with Eqgs. (1.2) and (1.3), through the
requirements

m (I Kb by =s" " m (J,K h,by,by),  (2.1)

and

bj=s"""b,, i=1,2.

(2.2)

Equation (2.2) simply expresses the intuitively appealing
requirement that the boundary magnetizations scale in
the same way as the bulk ones, as in the original MFRG
[1]. We adopt the usual definition s =(N /N’)1/? for the
rescaling factor. Setting again # =h'=0, expanding both
sides of (2.1) to linear order in b}, and b, ,, and using
(2.2), we arrive at the flow equations for the coupling con-
stants:

i
om'(¥',h',b') d—2y, Om 4(J,h,b)
oh'’ J’=J*,h’=0,b’=0— oh

Once more, due to the symmetry between m , and myg
mentioned above, it is irrelevant which of the two is used
for the evaluation of y,. For the same reason, we can
also work with the total magnetizations m’'=m/ +my
and m =m 4 +mp, and derive y, from the scaling of the
susceptibility Y =0m /dh through

v=s"""y, 2.6)

which will be useful later. We also note that, although
the feature of working in the neighborhood of b'=5b=0
is appropriate to the study of second-order transitions,
the flow equations presented above are capable of produc-
ing also low-temperature fixed points with the associated
¥, =d magnetic exponent which is the signature of a
first-order phase change [12].

Having developed the theoretical framework for our
approximate renormalization technique, we proceed in
the following two sections with specific applications.

III. ISING MODEL WITH CROSSING BONDS

In this section we apply the extended MFRG
(EMFRG) to the case of the Ising model with first- and
second-neighbor interactions (Ising model with crossing
bonds.) The Hamiltonian reads as

H=—BH=h 3 s;+J 3 s;s;+K 3 s;5;,
i (ij) «ij»

(3.1)

where the second sum is carried over nearest sites and the
third over next nearest sites. The model satisfies require-

I=J,,h=0,b=0 "

3305
omy(J',K',h',b’) om 4(J,K,h,b)
- = (2.3)
abl '=0,b'=0 abl h=0,b=0
and
om'(J',K',h',b") om 4(J,K,h,b)
- = (2.4),
ob;, '=0,b'=0 b, h=0,b=0

where we have used b’ and b as a shorthand for (b7,b5)
and (b{,b,). Due to the equivalence of the two sublat-
tices, the individual subcluster magnetizations obey the
symmetry m 4(J,K,h,b,b,)=mg(J,K,h,b,,b;) and
the same for the primed quantities; thus the flows ob-
tained if we use the B-sublattice magnetizations to per-
form the mapping are identical to (2.3) and (2.4) above.
Hence the method generates exactly two independent flow
equations, which are necessary and sufficient for the re-
normalization of the two-parameter Hamiltonian.

After the fixed points J,=(J,,K,) of the flows have
been found, the nonmagnetic eigenvalues A;, and the
critical exponents y, , =InA, ,/Ins, as well as the associat-
ed eigenvectors, are evaluated by the usual procedure of
linearizing around J,. The remaining magnetic exponent
is calculated through the relation

(2.5)

ment (i) of Sec. II; in order to meet the requirement of a
bipartite lattice, we must restrict our choices: in two di-
mensions, we will consider the square (sq) lattice, which
can be split into two square sublattices. Moreover, the
model on the square lattice has three types of ground
states (for 4 =0): a doubly degenerate ferromagnetic one
in the region {J >0; K > —J /2}, a doubly degenerate an-
tiferromagnetic one in the region {J <0; K >J /2}, and a
fourfold degenerate one with superantiferromagnetic
(SAF) order in the remaining region K < —|J|/2. The
SAF ground states consist of alternating rows of columns
of up and down spins. In order to satisfy requirement (iii)
of Sec. 11, we shall only consider the flows in the subspace
K 20 in which we have only the FM and AFM ground
states separated by the borderline of stability, J =0.

In three dimensions, we will study the simple cubic (sc)
lattice which separates into two face-centered cubic (fcc)
sublattices, and the body-centered cubic one (bcc) which
separates into two simple cubic sublattices. Again, for
reasons similar to those of the two-dimensional case, we
will only examine the flows in the subspace K =0; for
both the sc and bcec models, the ground states are again
FM for J >0 and AFM for J <0. We will present the
calculation in some detail for the sq model only, and just
describe the results for the sc and bcc cases, since the
essential characteristics of the flows are quite similar for
all three lattices.

A. Square lattice
For the sq model, we take as the small cluster the
N'=2 spins joined by an elementary bond, and as the big
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cluster the N =4 spins around an elementary plaquette of
the lattice (Fig. 1). These are the two smallest clusters we
are allowed to consider which satisfy the requirement of
equivalence of the sublattice clusters. We take the points

J

H'(s 4,55)=J'[s 455 +3(s 405 +spbh )] +4K (s ;b +5s5b5)+h'(s 4 +5p)

for the N'=2 cluster and
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A,C,... forming the A sublattice and the points B,D,...
forming the B sublattice. With the boundary magnetiza-
tions fixed to the values b1(b;) and b5(b,) for the 4 and
B sublattices, we obtain the effective Hamiltonians

H(s 4,85,5Sc,Sp)=J{s 45p +sgsctscsptsps+2[(s,+sc)b,+(sp+sp)b, 1} +

K{s sc+sgsp+3[(s 4+sc)by+(sg+splb, ]} +h(s +sgtsc+sp)

(3.3)

for the N =4 cluster. Using Eqgs. (3.2) and (3.3) above, we find the sublattice magnetizations per site as
sinh[(3J'+4K') (b} +b%)+2h']—e  ¥'sinh[(3J'—4K') (b} —b})]

m 4= 7
4" cosh[(3J'+4K')(b} +b})+2h']+e 2 cosh[(3J' —4K') (b} —b})]

and

(3.4)

m ,={e**2&sinh[(4J + 6K )(b, +b,)+4h |+2sinh(4Jb, +6Kb, +2h)—

e~ *2Kinh[(4J —6K )(b, —b,)]} X

{e/+2Kcosh[ (4 +6K )(b, +b,)+4h | +2 cosh(4Jb, + 6Kb, +2h )+

2 cosh(4Jb, +6Kb,+2h)+e  * " 2Kcosh[ (4] —6K )by —b,)]+2e 2K} 1,

Combining (2.3) and (2.4) with (3.4) and (3.5) above we
obtain the (J,K )—(J',K’) flows in the form

3J'+4K'—e " ¥'(3J'—4K’)
1+e™ 2
_ 4J+6K +12Ke “ 2K —o 347 —6K)

14+4e N 2Ky p =849, 44K (3.6)
and
3J’+4K’+e _21'(3J'_4Kr)
1+e™ %
_4J+6K +8Je H K +e M(4J—6K) (3.7)

1+4e —4J—2K+e *8J+2e —4J —4K
In the K 20 subspace, the flows (3.6) and (3.7) have the
fixed points (J,,K, ) presented below.

(i) A  stable low-temperature fixed point
L,=(+ o, + ) corresponding to the FM ground state.

(3.5)

(ii) A  stable low-temperature fixed point
L,=(—,+ o) corresponding to the AFM ground
state.

(iii) A mixed low-temperature fixed point L; =(0, + )
which attracts along the J =0 direction only and repels in
all other directions. This fixed point corresponds to the
four degenerate FM and AFM configurations that are the
ground states of the model, which, for J =0, reduces to
two decoupled sq Ising models with nearest-neighbor
coupling K.

(iv) A critical point C;=(0.1590,0.1499)
represents the ferromagnetic Ising criticality.

(v) A critical point C,=(—0.1590,0.1499) which
represents the antiferromagnetic Ising criticality.

(vi) A multicritical point C;=(0,0.3465) which
represents the criticality of the uncoupled sq Ising models
described above.

(vii) The stable, high-temperature fixed point P =(0,0)

which

N N A
AN : : e
« N ~ » )< ; - G h (== = 1 d
< N Pis P N \C/ FI .1.TeN—2andN—4custersus?
AN PN e Qe o for the renormalization of the sq Ising Hamil-
AN N N ~ ~ 7 tonian with crossing bonds. The fluctuating
L R S GERCEEEEREE J X PN X clusters are shown by solid lines. The filled
JAN B~ 4 N N dots form the A sublattice and the open ones
.7 AN TN O o : e the B sublattice.
« ¥ N hS e A A < - B AN
7 N N
o & N o
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tanh(K)

tanh(J)

FIG. 2. RG flows of the sq Ising Hamiltonian with crossing
bonds. The critical line is denoted by solid lines.

representing the paramagnetic phase.

The flows in the K =0 subspace are shown in Fig. 2.
We note that some of the flows emerge from two unstable
fixed points located at J=—2K,J—>+o and
J=2K,J— — w0, located at the borderlines of stability of
the ground states, which are not shown. As a first re-
mark, we note that the flows are very similar to those ob-
tained in the past by the use of other RG techniques
[13,14], displaying reflection symmetry about the J=0
axis and a cusp of the critical surface at the point Cj;.
However, the RG flows are obtained here in a much
simpler way, which is also readily generalizable to three-
dimensional models in a very straightforward fashion.
The flows are also similar to those obtained in earlier
work by Plascak [11], but with the significant difference
that here we avoid the ambiguities in the flows along the
J =0 axis found in that work. In particular, we are able
to obtain the multicritical fixed point C; on the J =0 axis
which was missing in that approach, and on which, as we
demonstrate below, certain important relations between
the critical exponents are satisfied to a reasonable degree
of accuracy. On the other hand, an obvious deficiency of
our approach in its present formulation is that the theory
is unable to locate the SAF critical fixed point at
J=0,K, <0 since the way of separating the sublattices
makes it inapplicable at present to the region in which
the SAF fixed point lies.

For the calculation of the magnetic exponent y,, a spe-
cial treatment is required for the AFM fixed points. As
can be seen from Eq. (2.6), when 4 is relevant, i.e., y, >0
(and y, >d /2 of course) we have Y’ <y. On the other
hand, when 4 is irrelevant and thus y, <0 we obtain the
inequality ¥’ > x. However, the last inequality itself only
implies y, <d /2, and not necessarily y, <0. Indeed, the
sign of y, is very sensitive to the choice of the rescaling
factor s. In order to avoid complications related to the
choice of this factor, and keep the discussion as simple as
possible at present, we will characterize the magnetic
field as irrelevant whenever we obtain Y’ > ¥, and this is
indeed what we get at the AFM-criticality fixed point C,.

For the low-temperature fixed points L; and L; we ob-
tain the correct magnetic exponent y, =d, a manifesta-
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TABLE I. The T >0 fixed points of the RG flows for the sq
Ising model with crossing bonds presented in the text [Egs. (3.6)
and (3.7)] along with the corresponding critical exponents.

(Ja,K4) )2 y2 2y, —d
C, (0.1590,0.1499) 0.760 —1.023 0.974
C, (—0.1590,0.1499) 0.760 —1.023 —0.037
C, (0,0.3465) 1.073 0.600 0.830
P (0,0) —1.170 —0.830 0

tion of a first-order phase transition [12]. For the point
L, the magnetic field is irrelevant, whereas at the
paramagnetic fixed point P we find correctly the result
Y, =d /2. The locations of the T >0 critical points and
the corresponding critical exponents are summarized in
Table I.

The critical lines intersect the K =0 axis at the points
J,==0.336, which is the estimate from our theory for
the FM and AFM critical couplings of the nearest-
neighbor Ising model, to be compared with the exact re-
sult [15] J,==0.441. This result is of the same quantita-
tive accuracy as that obtained from the original MFRG
with a 2— 1 mapping, namely, J,=0.346; the latter is
also the value of K, =K, at the fixed point C; which
represents the FM criticality of the uncoupled sq Ising
models with nearest-neighbor interactions only. The
thermal exponent y; =0.760 (at points C; and C,) is in
reasonable agreement with the exact result y, =1, and the
magnetic exponent y, =1.487 differs from the exact one
y,, =2 by about 20%.

At the multicritical fixed point C; we have an ex-
ponent y;=1.073 with the corresponding eigenvector
along the (1,0) direction and an exponent y, =0.600 with
the corresponding eigenvector along the (0,1) direction.
This allows us to identify the latter with the thermal ex-
ponent y, of the uncoupled Ising lattices, and we call
Y=y, to comply with the terminology introduced in
Ref. [14]. As a first remark, we note that y, differs from
the thermal exponent y, for the points C; and C,, but
this is not surprising in view of the fact that our method
is a 4—2 mapping in general, but for J=0 it reduces
effectively to a 2—1 mapping; different degrees of ap-
proximation in the mappings yield different estimates for
the critical exponents, as expected. On the other hand,
the magnetic exponent y,=1.415 at C; is not too
different from y, =1.487 at C,| and C,. According to van
Leeuwen [14] the exponents y, and y, must satisfy the re-
lations

ys =2y, —d (3.8)

and

ys/yt=7/lsing . (3.9

Using the results in Table I, we find that the right-hand
side (RHS) of (3.8) is equal to 0.830, whereas the LHS is
1.073, which shows once more that the critical exponents
are not evaluated very accurately in the MFRG, at least
with small clusters and with the naive definition of s;
however, the ratio y, /y, is equal to 1.789, and the exact
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TABLE II. The T >0 fixed points of the RG flows for the sc
Ising model with crossing bonds and the corresponding ex-
ponents.

(J4,Kx) Y1 Y2 2y, —d
C, (0.0629,0.0580) 0.506 —0.424 0.552
C, (—0.0629,0.0580) 0.506 —0.424 —0.056
C, (0,0.0912) 0.443 0.344 0.376
P (0,0) —0.966 —0.377 0

result for the RHS of (3.9) is ¥4,,=1.75, which shows
that ratios of the critical exponents come out rather accu-
rately in this approach, since they are independent of the
precise definition of the rescaling factor.

We now extend the approach to three dimensions,
studying the flows for the simple cubic and body-centered
cubic models, always in the subspace K = 0.

B. Simple cubic lattice

For the sc lattice the two clusters are again the elemen-
tary bond (N'=2) and the elementary plaquette (N =4),
once more the smallest possible clusters which satisfy the
requirements of the approach. The low- and high-
temperature fixed points L,, L,, L;, and P are identical
to those in the sq case, also with the correct magnetic ex-
ponents. Once more, we find the two critical points C;
and C, and the multicritical point C; whose coordinates
and critical exponents are summarized in Table II. The
overall flow pattern is identical to that in the sq case.

The critical lines now intersect the K =0 axis at the
points J, =%£0.192, to be compared with the “exact” re-
sult [15] J,=20.222. At the critical points C; and C,
we find the thermal exponent y,=0.506 which differs
quite a bit from the “exact” result [16] y, =1.587; the
magnetic exponent y, =1.776 is somewhat closer to the
value [16] y, =2.485. The value K, of the point C; gives
an estimate of the critical coupling of the fcc nearest-
neighbor Ising model, since for /=0 the model decouples
into the two independent fcc sublattices of the sc lattice.
We obtain K. =K, =0.091 to be compared with the esti-
mate [15] K.,=0.102. We note in passing that the
MFRG inherits from the underlying mean-field ideas the
characteristic that the values of the critical couplings im-
prove, for the same degree of approximation, as the coor-
dination number of the lattice increases. The value of the
thermal exponent, however, does not: at the point Cj;,
¥Y; =y,=0.344, which is worse than the values at C, and
C,; ideally, all these estimates should converge to the ex-
act three-dimensional (3D) Ising values as one considers
larger and larger clusters. The magnetic exponent at Cj;,
y, = 1.688, is again not too different from its value at C,.
Regarding the relation (3.8) we obtain 0.443 for the LHS
and 0.377 for the RHS, whereas the ratio y, /y, =1.288 is
not too far away from the “exact” value ¥, =1.238
(Ref. [17]) required from Eq. (3.9). Again, the ratio of the
critical exponents is very accurate, although the individu-
al exponents are not.

C. N. LIKOS AND A. MARITAN 53

FIG. 3. A local arrangement of the bcc lattice and the bec
Wigner-Seitz unit cell.

C. Body-centered cubic lattice

Here, the small cluster is chosen to be the nearest-
neighbor bond (N’'=2). For the larger cluster, there are
two N =4 choices that satisfy the requirements: the
ABCD tetrahedron and the ADCE parallelogram shown
in Fig. 3. Both mappings yield identical low- and high-
temperature fixed points, with the correct magnetic ex-
ponents. Moreover, they yield the same multicritical
point C;=(0,0.203) but they differ slightly in the non-
magnetic critical exponents at C; as well as at the loca-
tions and exponents of the critical points C, and C,. The
flow patterns are again very similar to those presented
above for the other lattices. Although the critical fixed
points are different, the critical lines from the two map-
pings are almost identical. This demonstrates that the
method is robust (insensitive) to the choice of the large
cluster.

The results are summarized in Tables ITI(a) and III(b).
The value K, =0.203 at the fixed point C; is an estimate
for the critical coupling of the sc Ising model with
nearest-neighbor coupling, again not too far from the ex-
act value 0.222 and the previous sc estimate 0.192. The
critical lines now intersect the K =0 axis at the points
J,==0.140 for the tetrahedron — bond mapping and
J,==0.139 for the parallelogram — bond mapping
which are the estimates for the bcc Ising critical cou-
pling, to be compared with the best estimate [15]
J.==0.157. A comparison of the critical exponents with
the exact ones shows that the tetrahedron — bond map-
ping yields better results not only in terms of their nu-
merical values, but also in the sense that it predicts al-
most identical values for the thermal and magnetic ex-
ponents for the points C; and C,, as required by univer-
sality. The relations (3.8) and (3.9) are satisfied within an
error of at most 10%.

The above discussion demonstrates that the RG
method we propose here yields very satisfactory results
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TABLE III. (a) The T >0 fixed points of the RG flows for
the bee Ising model with crossing bonds and the corresponding
exponents obtained from the tetrahedron—bond mapping; (b)
same as part (a) but using the parallelogram—bond mapping.

(Je,K4) Y1 ya 2y, —d
(a)
C, (0.0781,0.0791) 0.653 —0.848 0.724
C, (—0.0781,0.0791) 0.653 —0.848 —0.061
C, (0,0.2027) 0.901 0.650 0.788
P (0,0) —0.667 —0.789 0
(b)
C, (0.0994,0.0494) 0.426 —0.800 0.466
C, (—0.0994,0.0494) 0.426 —0.800 —0.026
C, (0,0.2027) 0.846 0.650 0.788
P (0,0) —0.320 —0.789 0

for some standard “test” models, and thus it is a plausible
technique for the renormalization of more complicated
Hamiltonians.

IV. MORPHOLOGICAL MODEL

We consider in this section a phenomenological mor-
phological Hamiltonian on a bcc lattice, introduced re-
cently in order to model the phase behavior of mi-
croemulsions [6]. Here, we outline the basic ideas in the
derivation of the model, and refer the reader to Ref. [6]
for details. Let us consider a three-dimensional Bravais
lattice with periodic boundary conditions, having N sites
and volume ¥V, whose Wigner-Seitz (WS) unit cells con-
tain either bulk water or oil. In addition, the system con-
tains amphiphilic molecules which are supposed to form
an incompressible membrane in the interface between oil
and water, defining in this way a Gibbs dividing surface
between the two bulk phases. After choosing an orienta-
tion for this interface, a collection of water cells fixes
uniquely an interfacial pattern, and vice versa. We
denote a cell to be “occupied” if it contains water, and
“empty” if it contains oil. The morphological features of

3
H(s)=3 h,V,(s)=h,

a=0

hy
4 j

V73 2
Y g2 e |4
3+2 2 5T yavaray 2 S
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each pattern can be described by the Minkowski func-
tionals; in three dimensions, these are the geometric in-
variants: covered volume, surface area, integral mean
curvature of the interface, and the combinatorial Euler
characteristic X of the pattern. We have X =(number of
disconnected  components)—(number of  handles)
+(number of cavities) in three dimensions. In the
present model the interfaces have no holes. The family of
the Minkowski functionals is characterized by a theorem
which asserts that any real-valued, additive, motion-
invariant, and continuous functional defined on the col-
lection of the 2% configurations is a linear combination of
the Minkowski functionals. [18,19]. In order to deal with
the statistical morphology of the interfacial membrane,
we therefore take the Hamiltonian to be of the generic
form:

3
H= h,V,,

a=0

4.1)

where h, are energy parameters and V', are, within pro-
portionality factors, the dimensionless Minkowski func-
tionals as follows: denoting by vV, A, M, and X the
covered volume, exposed area, integral mean curvature,
and Euler characteristic of the pattern formed by the full
cells, we have V=Y /(8V21%), V,=A /[3(4V2+2)I?],
V,=M/(6ml), and V3;=X. The various factors arise
from the definition of the Minkowski functionals via
Steiner’s formula, and their values for the bcc WS po-
lyhedron (see the Appendix and Table I of Ref. [6]). The
length scale / is the edge length of the WS unit cell of the
bece lattice, I =aV'2/4, where a is the bce lattice constant
(see Fig. 3).

Using the property of additivity, one can derive concise
expressions for the Minkowski functionals in terms of the
occupation numbers u; =0, 1(u; =0 if the cell is occupied,
u; =1 if it is empty) and in Ref. [6] the Hamiltonian was
written down explicitly in that representation. Here, it
will be more useful to write the Hamiltonian in terms of
“Ising spin” variables s; ==*1, with s;=1 denoting a full
site and s;=—1 an empty one (i.e., s5;=1—2u;). Setting
s=(8,85, . . . ,Sy), the final expression reads as

(4.2)

h, hs3
vy [-—2 s;it+ 5 3888 ] + e [—N+ s —E 3 58S
1

The primed and double-primed sums are carried over
nearest- and next-nearest-neighbor bonds, respectively.
The triple-primed sum runs over isosceles triangles, two
of the sides of the triangles being first-neighbor bonds and
the third being a second-neighbor bond. Such are the
ABC, BCD, ABD, and ACD triangles in Fig. 3, for in-

f

stance. Finally, the four-primed sum runs over tetrahe-
dra whose faces are isosceles triangles as above, e.g., the
ABCD tetrahedron of Fig. 3. Under the interchange
—s;, the integral mean curvature is odd, whereas the
exposed area and Euler characteristic are even.

We are going to deal exclusively with the case h, =0

S; —
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(no spontaneous internal curvature.) For hy=h, =0, the
ground states (GS’s) of the model are the following: a
doubly degenerate ferromagnetic GS (oil or water, OW)
in the region

V73

— 4.3
2V3+1 “3

hs < h1;h3>‘h1};

a doubly degenerate antiferromagnetic GS [(“plumber’s

nightmare,” (PN)] in the region

V3 231 ]
hyts

hs (4.4)

2V3+1° V777 502v3+1)
and a fourfold degenerate “droplet” phase in the region

2v'3—1
ha<—hihs <o A ™ } @3
The “plumber’s nightmare” is an ordered, cubic phase
characterized by a structure of interwoven, coherent oil
and water tubes, separated by a layer of amphiphiles.
The droplet phase is realized when one of the two sc sub-
lattices has ferromagnetic and the other antiferromagnet-
ic order. The subspace h; >0 is covered completely by
the OW and PN ground states, separated by the border-
line of stability 4, =(2V'3+4 1)k, /V'3; thus, according to
the general requirements laid out in Sec. II, we are going
to consider the flows in the subspace /3 = 0 only [20].
Dropping the uninteresting spin-independent constants
from the Hamiltonian, and defining

_ Bhy _ Bh, _ Bhs
2’ 24(4V3+2)° 16

we arrive at the expression

h= ) (4.6)
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=—BH=h 3 s5+(6V3I—2K) 3 s;s;

+4J 3" 55, K 3 s;8p5k8 - 4.7)
For the choice 4 ;=0 the model reduces to a conventional
bee Ising model with an additional second-neighbor cou-
pling, namely,

H=h3 s;+L 3 s;s;+al 3" s;s; , (4.8)
i

where L =[J’1/§h1 /(16V3+8) and a=2/(3V3) is the ra-
tio of second- to first-neighbor coupling.

We are now interested in the renormalization of Ham-
iltonian (4.2). When h,=h, =0 a real-space RG will gen-
erate flows with at least three parameters corresponding
to the three even interactions in (4.7), whereas the initial
morphological Hamiltonian (4.1) contains only two, h;
and A3 [or J and K in (4.6) and (4.7)] in the even sub-
space. However, after coarse graining the effective Ham-
iltonian must still be additive, motion invariant, and con-
tinuous like the initial one. Thus it must be again a linear
combination of the Minkowski functionals, i.e., of the
form (4.1). Our extension of the MFRG allows us to im-
pose this requirement quite naturally, by assuming that
the renormalized Hamiltonian for the N’ cluster always
has the form (4.7).

Clearly, the model satisfies all prerequisites of Sec. II,
and we can proceed with the EMFRG approach. We
choose for the small cluster the 4B bond (N'=2) and for
the large one the ABCD tetrahedron (N =4) shown in
Fig. 3. The points 4,D,... form the A sublattice and
the points B,C,. .. form the B sublattice. Some details
of the derivation of the flows are given in the Appendix.
The flow equations read as

(42V'3J' — 14K ")sinh(6V 3]’ —2K ') +24J 'cosh(6V3J' —2K ")

cosh(6V3J'—2K")

= [e‘24‘/3+8>1‘7’<[(72\/§+40)J—22K]+2e ~K(400 —2K)—

(V38 HIK[(721/3—40)J —26K | [ X

-1
le(z4\/3+8)J—7K+4e —K 9 ~81+K+e<—24\/3+8)1+91<}

and

(42V'3J’'— 14K ' )cosh(6V'3J’ —2K ')+ 24J 'sinh(6V 3J' —2K")

cosh(6V3J'—2K")

= [e(24‘/3+8”'7’([(72\/§+40)J—22K]+2e ~K(72v37—24K )+

e THUVIHBIOK (7213 40)] —26K ] [ X

-1
{6(24\/3+8)J—7K+4e —K+Ze~81+K+e(—24\/3+8)1+9Kl .

(4.10)
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The above flows have in the subspace K =0 the fixed
points (J,, K, ) listed below.

(i) A  stable low-temperature fixed point
L,=(+o0,+ ) representing the ferromagnetic (OW)
ground state.

(i) A  stable low-temperature fixed point
L,=(—o0,+ ) representing the antiferromagnetic
(PN) ground state.

(iii) A _mixed low-temperature fixed point

L;=(J,,3V3J,) with J, —+ . This point attracts in
the direction K =3V'3J [i.e., h;=V'3h,/(2V'3+1)] and
repels in the other directions. It corresponds to the four-
fold degenerate ground states of the model when the cou-
plings #; and /3 have the ratio given above, and in which
case the first-neighbor coupling vanishes; then, the OW
and PN phases are all degenerate at 7=0.

(iv) A critical point C;=(1.656X1072,5.306X 1072
which represents the Ising ferromagnetic criticality.

(v) A critical point C,=(1.407X10729.858X10"2)
which represents the Ising antiferromagnetic criticality.

tanh(Bh,/10)

tanh(Bh,/10)

Bhs

FIG. 4. RG flows of the bcc morphological Hamiltonian: (a)
throughout the subspace 43 =0 and (b) in more detail, in the
neighborhood of the critical points. The lines along which the
critical points C, and C, attract are denoted solid. The dashed
line is the locus of vanishing inverse susceptibility from the sim-
ple mean-field approximation. The mean-field tricritical point is
indicated by the dot. The filled triangles denote values of the
energy parameters for which the mean-field approximation
yields three-phase coexistence between oil-rich, water-rich, and
a middle, random, bicontinuous microemulsion.
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(vi) A multicritical C,=(2.785X1072,
1.447X107Y).

(vii) The high-temperature, stable fixed point P=(0,0)
representing the paramagnet.

The flows are shown in Fig. 4(a); due to the particular
representation chosen to show the flows, the fixed points
L, and L; coincide in this figure. We obtain the correct
magnetic exponent y, =d at L, and L; and y,=d /2 at
P. The subspace h;=V3h,/(2V'3+1) is an eigenspace
of the flows, with the fixed point C; lying in this sub-
space. Flows that start in this space remain in it, running
towards the point L; if they start above C; or towards
the point P if they start below C;. Thus, in the special
case of a model with vanishing first-neighbor coupling,
the flows maintain that property. The parameter space is
thus separated into three basins of attraction [see Fig.
4(a)]. Flows starting in the region enclosed in the “trian-
gle” formed by the two critical lines and the axis #;=0
run towards the P point. Flows starting outside the trian-
gle and on the right of the line P-C;-L; run to the OW
fixed point L,, always remaining in the region
hy<V'3h,/(2V'34+1); and flows that start outside the tri-
angle but on the left of the line P-C;-L; run initially close
to L;, but eventually they turn around to end up in the
PN fixed point L,, staying always in the subspace
hy>V3h,/(2V341).

The locations of the 7' > O fixed points and the associat-
ed critical exponents are summarized in Table IV. We
note that the method predicts identical values for the
thermal exponent y; for both ferromagnetic and antifer-
romagnetic Ising critical points, as it should. The value
»1=0.691 is comparable to the value y; =0.653 obtained
for the bce Ising model with crossing bonds using the
same kind of mapping (tetrahedron—bond) discussed in
Sec. III [see Table III(a)]. As further evidence for the
consistency of the method, we note that the critical line
of the C, fixed point intersects the 45 =0 axis at the point
Bh§=2.019 [see Fig. 4(b)]. Accordingly, the critical cou-
pling of the Hamiltonian (4.8) (to which the model
reduces in the case h;=0) is predicted to be L, =0.098.
On the other hand, the line corresponding to
a=2/(3V'3) intersects the critical line of the ferromag-
netic fixed point C; of the bcc Hamiltonian studied in
Sec. III at a point whose abscissa is equal to 0.105. The
two estimates differ by less than 7%.

In order to obtain more detailed information about the
phase behavior of the model, we have to invoke the re-
sults from other techniques as well, for example, from the
simple mean-field approximation. The reason is that the

point

TABLE IV. The T >0 fixed points of the RG flows for the
morphological Hamiltonian and the corresponding exponents.

(J+,K4) V1 b2 2y, —d
C, (1.656X1072,5.306 X1072) 0.691 —0.740 0.646
C, (1.407X1072,9.858X1072) 0.691 —0.610 —0.029
C; (2.785X1072,1.447X1071) 0.728 0.564 0.516
P (0,0) —0.667 —0.789 0
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proposed RG scheme has certain limitations due to the
feature of always expanding the cluster magnetization
around vanishingly small expectation values {s;) of the
surrounding spins. Consequently, not all of the points ly-
ing on the “critical lines” correspond to true criticalities.
Let us consider, for instance, the mean-field expression
for the free energy per site which reads as [6]

Bf(m)—&(l + B 3(—1+4m —3mY)+
1+m 1+m 1—m 1—m
5 lnl S e LY Rl @.11)

where m =(s; ). Expanding the free energy about m =0
up to O(m*) and dropping the uninteresting constants,
we obtain

Bh, +Bh3

1
4 2

3Bh3 1

m2

Bf (m)=

(4.12)

The requirement of vanishing coefficient of the quadratic
term identifies the line of diverging susceptibility,
¥~ 1=0, and reads as

Bhy= M . (4.13)

2

However, not all the points defined by (4.13) correspond
to tue criticalities, which happen only when the
coefficient of the m* term is positive. This requirement
yields a tricritical point (Bh{" BhY)=(2,2). In Fig. 4(b)
we plot the line (4.13) along with the flows and indicate
the tricritical point by a dot. We note that below the dot
the attractive line of the fixed point C; almost coincides
with (4.13). The true tricritical point of the model must
occur at a temperature lower than the mean-field predic-
tion, of course, but taking for now the estimate for tricri-
ticality from the mean-field approximation for granted,
we can give to the attractive line of the point C, the fol-
lowing interpretation: the segment of the line below the
dot corresponds to true criticality. However, the part of
the solid line above the dot does not represent a line of
critical points, but rather a line of diverging susceptibility
at m =0 which, however, does not correspond to true cri-
ticalities because these are preempted by the phase coex-
istence between oil-rich and water-rich phases [21]. The
inability of the present RG scheme to distinguish be-
tween a critical line and a line of preempted criticalities
lies in the expansions of the magnetizations about vanish-
ingly small values of the boundary spins, i.e., in the as-
sumption that the system is translationally invariant and
has a vanishingly small bulk magnetization. Similar con-
siderations also apply to the C, “critical line.”

Another feature of the model found in the mean-field
approximation and confirmed by extensive Monte Carlo
simulations [6] is the possibility of three-phase coexistence
between oil-rich, water-rich, and a middle disordered
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phase, characterized as a microemulsion in view of its
morphological (negative FEuler characteristic) and
structural (a peak of the structure factor at nonzero wave
vector) properties. The three-phase coexistence is caused
by the competition between a positive surface tension
Bh~1 of the incompressible surfactant film, which tends
to minimize the exposed area, and a positive topological
potential Bh;~1 which encourages structures with a
large surface area in order to accommodate many han-
dles, and thus it assists the entropic tendency to disperse
the amphiphiles. The microemulsion has a finite correla-
tion length & of the order of a few lattice constants, i.e., it
displays short-range order (unlike the completely random
mixture, or ‘“paramagnet” in the magnetic language).
Clearly, since £ is neither vanishing nor diverging, the
microemulsion is not represented by a fixed point in the
flow diagram. We must, therefore, resort once more to
external information in order to identify the region in the
flow diagram which represents stable microemulsion
phases. According to earlier work [6], the middle phase
occurs in a range of temperatures 0.80 S kpT /h; <3, the
upper limit being the tricritical temperature, above which
three-phase coexistence ceases to exist. On the other
hand, below the lower limit the middle phase again disap-
pears because it is replaced by a slightly disordered
“plumber’s nightmare” phase. We take the combinations
of the energy coefficients that give a three-phase coex-
istence as “pointers” that indicate the region on the flow
diagram where the microemulsion is stable. In Fig. 4(b)
we mark a few of those points, which are once more ob-
tained from the mean-field approximation; the latter has
been found to be relatively accurate in its predictions for
the triple points, when compared to the simulation re-
sults [6]. Referring to this figure, we can now assert that
the neighborhood of the filled triangles below the PC,
line, to the left of the solid line, and above the tricritical
point roughly defines the domain of thermodynamic sta-
bility of the microemulsion. Clearly, upon coarse grain-
ing all points in the microemulsion regime flow towards
the paramagnet. In order to delimit the region of stabili-
ty of the microemulsion more accurately, one could, for
example, study the small wave number behavior of the
Fourier transform of the correlation function within the
RG scheme. However, such a calculation lies beyond the
scope of this work.

V. SUMMARY AND CONCLUSIONS

We have presented a generalization of the mean-field
renormalization group method which provides a way of
renormalizing Hamiltonians with two coupling constants
in the even interaction part. The method builds on ideas
which are similar to those of the original MFRG, but it
goes beyond the limitation of a single flow equation by
employing scaling assumptions about suitably chosen
sublattice magnetizations. We applied the method to
several model Hamiltonians, obtaining satisfactory re-
sults for the flow diagrams. An obvious challenge for the
future is the development of these ideas even further, so
that we will be able to deal with Hamiltonians involving
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more than two parameters. A possible way to achieve
this goal will be through a separation of the lattice into
more than just two suitably chosen sublattices; however,
since the EMFRG always yields as many flow equations
as sublattices, it may be necessary in some cases to aug-
ment the original Hamiltonian by a suitably chosen num-
ber of interactions and coupling constants until the num-
ber of couplings matches the number of sublattices.
Then, the flows would be obtained in this enlarged pa-
rameter space, and one could look at the flows in the
original, restricted domain by taking the appropriate
“cuts” in Hamiltonian space.

The morphological model of Sec. IV includes all addi-
tive geometrical invariants whose thermal averages are
extensive. The manifest additivity of the Hamiltonian is
a sufficient, but not necessary, condition for the thermo-
dynamic requirement of extensivity of the internal ener-
gy. Therefore, one should not exclude a priori terms in
the Hamiltonian which are not additive; in particular, a
nonadditive ‘“curvature-square” term, which is employed
in most current models of microemulsions, is missing
from the Hamiltonian. In the original paper [6], it was
argued that the model deals with length scales exceeding
the persistence length [22] &,, where the above contribu-
tion (also called the “bending energy”’) can be omitted be-
cause the scale-dependent bending rigidity has been re-
normalized away. A nonperturbative renormalization of
a Hamiltonian including the surface area and bending en-
ergy terms only was presented recently [23]; our model is
complementary to that of Ref. [23] in that it includes the
Euler characteristic term, but not the bending rigidity. It
would be desirable, therefore, to start with a Hamiltonian
that includes the Minkowski functionals and the bending
energy and proceed with its renormalization, in order to
see the crossover from the rigidity-dominated regime (for
lengths scales below &,) to the regime above &, where the
thermal fluctuations dominate over the rigidity and the
membrane is crumpled. We plan to return to this prob-
lem in the future.
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APPENDIX

Here we outline the steps for the derivation of the flow
equations for the morphological Hamiltonian of Sec. IV,
Eq. (4.7). Consider first the small cluster 4B, N'=2.
Fixing all the surrounding A4(B) sublattice spins to the
value b} (b3 ), and using (4.7) and Fig. 3, we arrive at the
effective Hamiltonian of the N’'=2 cluster of the form

H'(s 4,55)=h'SH+(6V3J' —2K")S| +4J'S, +K'S} ,

(A1)
where
So=s4+5sp, (A2)
S1=s,85+7(s b5 +spb}), (A3)
S5=6(s b| +sgb}), (A4)
and
S, =6b1b}[s 55 +3(s by +spb})] . (AS5)

Similarly, the effective Hamiltonian for the ABCD cluster
(N =4) has the form

H(s 4,55,5cSp)=hS,+(6V3J —2K)S, +4JS,+KS, ,

(A6)
where
So=s,+tsp+sc+sp, (A7)
S, =548 t8pSpt+SpScT8cSy4
+6[(s4+sp)by,+(sp+sc)b], (A8)
S,=s48p +sgsc+5[(s,+sp)b,+(sg+sc)b,], (A9)

and
S,=s,SpScSp +5psc(s 4+sp)b,+s  sp(sp+sc)b,+
3(s 455 +spsp+spsc+5cs )biby+s 4spb3+spschbi+
13b,b,[(s 4 +sp)by+(sp+sc)by] . (A10)

Using the above expressions, and ignoring terms of order
(b")? and b? which do not contribute anything to the flow
equations, we find the sublattice magnetizations per site
as

m’ =(e53 ~2K'sinh ([ (42V/3424)J' — 14K" (b}, +b})} +

e "6V UK ginh ([(42V3—24)]' — 14K |(b} —b')})

X (e6Y3 ~2K'cosh{[(42V/3+24)] — 14K" (b} + b))} +

e 6V F UK ginh ([(42V/3—24)J — 14K (b}, —b')}) !

for the small cluster, and

(A11)
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m = (e @38 ~TKginh ([(72V3440)J —22K |(b, +b,)} +

2e ~Xsinh{(72V3J —24K )b, +(40J —2K )b, } +

o ~2V3H8IHKGn ([(72V/3—40)J —26K (b, —b,)} ) X
(e 2#V3+8~TK osh ([(72V/3440)J —22K (b +b,)} +

2e “Kcosh{(72V/37 —24K )b, +(40J —2K )b, } +
2e “Xcosh{(72V'3J —24K )b, +(40J —2K )b, } +

2e "B K4 o (~28V3HBI K 06k ([(72V/3 —40)T —26K |(by —by)]) !

(A12)

for the large cluster (where we have set h’'=h =0). Differentiation of Egs. (A11) and (A12) with respect to b} and b/
and b, and b, leads to the flow equations (4.9) and (4.10) of the main text. The zero-field susceptibilities needed for the

calculation of the magnetic exponent read as
6V3J, —2K
e * *

— = (A13)
X Cosh(6V3T, —2K, )
and
. 4[e(24\/§+8)J*~7K*+e~K*] ) AL
* e(24\/3+8)J* v7K*+4e—K*+2e—8J*+K*+e(f24\/3+8)J*+9K*
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